На главную сайта   Все о Ружанах

Вернер Альбринг

ГОРОДОМЛЯ.

немецкие исследователи ракет в России

Под редакцией Германа Винке

© СПб, «Европейский дом», 2005

Наш адрес: ruzhany@narod.ru

Эксперименты в Городомле
и испытательные стрельбы в Казахстане

Короткое посещение Парижа весной 1942 года, задолго до нашего пребывания в России. Я был приглашен в научно-исследовательский институт «Bassind'Essayc des Care'nes» посмотреть установку для измерения сил и моментов на модели судна при ее движении по кругу. Вместе с инженером из торпедного научно-исследовательского института в Эллунфёрде я должен был проверить, возможно ли с помощью этой установки измерить силы и моменты на погруженной модели торпеды при ее круговом движении, и если это возможно, то определить, какой специальный инструментарий для этого мог бы потребоваться.

В просторном многопрофильном научно-исследовательском институте судостроения нам показали введенную в строй установку. Мы увидели весьма импозантное техническое сооружение. Это был большой водный бассейн круглой формы семидесяти метров в диаметре и глубиной в несколько метров. В середине бассейна находился круглый бетонный остров. К этому острову от наружного края вел стальной мост с фермами. С моста в воду погружалась модель судна примерно в три метра длиной. Мост, приводимый в движение электромотором, мог объезжать бассейн так, как стрелка часов обходит циферблат — он передвигался на колесиках по рельсам, проложенным по краю бассейна, вращаясь вокруг вертикальной оси, установленной на острове.

Этот незначительный эпизод моей жизни впоследствии сыграл большую роль в наших экспериментах в Блайхероде и Городомле. А тогда в Париже мы оба — я и инженер из торпедного института (его знали Франц Рюбзам, и мы с ним были однолетками) доложили о своем прибытии в военно-морском министерстве на Площади Согласия, Place de la Concorde. Офицер, осведомленный о нашем интересе к экспериментам в водных каналах, знал об опытном стенде в небольшом институте аэронавтики. Он сказал: «Если Вы этим интересуетесь, я мог бы отвезти Вас туда на своем автомобиле». И несколько удлинил поездку, чтобы немного показать нам Париж.

Был изумительно теплый мартовский день. Вдоль длинных бульваров уже цвели каштаны. Офицер свернул на крутую узкую улицу. По обеим сторонам высились каменные фасады старых домов, с которых осыпалась штукатурка. Однако все было живописно приукрашено солнечным светом. Приехав на холм, который называется Монмартр, мы увидели большую церковь. Ее византийские купола сверкали белизной. Это была базилика Сакре-Кер. Ее стиль необычен дли римско-католических культовых сооружений Западной Европы. Церковь старая и достойная уважения, но она всего на один год старше меня, если считать от 1913 года времени ее завершения. Строительство, разумеется, началось гораздо раньше в восьмидесятые годы 19-го столетии. С холма просматривается панорама тянущегося до самого горизонта города, пересеченного светлой рекой, через которую натянуто много мостов. Затем все внимание притягивает Эйфелева башня. Высотой в триста метров, она была построена для Всемирной выставки 1889 года. Ее конструктор Эйфель был не только неутомимым инженером-строителем, но и пионером аэродинамики. Сопротивление воздуха он определял опытным путем, бросая с башни тяжелые шары. Позднее он построил первую аэродинамическую трубу, и первый же написал книгу о систематических измерениях на моделях крыльев самолетов.

Вот мы уже снова сидим в автомобиле и проезжаем мимо Триумфальной арки — Arc de Trioumphe, величественного монумента, напоминающего сооружения римских форумов. Ее постройка началась в 1806 году по воле Наполеона Бонапарта, тогда еще непобедимого французского императора, владыки всей континентальной Европы. Каким гигантски возвышенным чувством жизни должен воспламениться человек, чтобы увековечить себя и свои успехи в таком монументе!

Мы прибыли в институт и сотрудник руководителя моей диссертации Пауля Рудена, работающего теперь в Аинринге, в научно-исследовательском институте аэронавтики в Австрии показал нам плоский водный канал. По плоской горизонтальной прямоугольной поверхности равномерной струей течет вода. Она омывает объект исследования — поперечное сечение крыла. Сопровождающий нас специалист просит внимательно посмотреть на воду на выпуклой стороне профиля при увеличении скорости воды. Для этого медленно повышается число оборотов насоса, подающего поток.

Сначала, при малой скорости обтекающего потока, я не вижу ничего особенного — вода плавно обтекает профиль, на выпуклой стороне его на поверхности воды образуется небольшая впадина. С увеличением скорости потока воды впадина становится глубже. Затем происходит нечто особенное. Вода со дна впадины выпрыгивает на высоту общего уровня потока слегка вспененной и с крутым передним фронтом. Впадина становится несимметричной. Поперек крыла внутрь свободной воды вдается узкий крутой фронт, растягивающийся на довольно далекое от крыла расстояние. Сопровождающий спрашивает: «Не напоминает ли Вам эта волновая картина то, что Вы уже знаете?» Я раздумываю. Это обтекание крыла плоским потоком был довольно необычным экспериментом, и я, определенно, такого еще не видел. Но тогда скачкообразное уплотнение воздуха на крыльях, на выпуклой стороне которых достигалась сверхзвуковая скорость, часто наблюдали, и фотографировали с помощью мерцающей скользящей оптики интерференционный метод. И так называемый скачок уплотнения на фотографии отображался как четкая черная линия на фоне белого окружения выпуклой стороны крыла. Ударная волна обтекает профиль со сверхзвуковой скоростью, в скачке же поток тормозится и имеет дозвуковую скорость.

Я спросил сопровождающего о связи скачкообразного уплотнения воздуха на крыльях самолета с его экспериментом. Он кивнул: «Да, течение в плоской воде аналогично потоку газа. Местная глубина воды соответствует плотности газа, прыжок воды - это скачок уплотнения в газе». Я быстро понял, что это не случайное подобие явлений, а аналогия, полученная из сходства соответствующих дифференциальных уравнений аэрогидродинамики.

Все эксперименты в газовом потоке очень дорогостоящие. Мощность привода, необходимая для аэродинамической трубы (которая должна продуваться с высокой дозвуковой скоростью) очень большая, и она будет еще больше для сверхзвуковой аэродинамической трубы. «С помощью таких простых экспериментов очень полезно проводить предварительные опыты» — сказал экспериментатор в заключение. «Здесь инициатором таких экспериментов, — услышал я, — стал старейший сотрудник нашего института господин Рябушинский, русский эмигрант, выехавший из России после 1917 года». Я был представлен этому добродушному несколько полноватому старому господину. Мечтательные глаза за тонкими стеклами очков, редкие тонкие волосы, длинная заостренная бородка. Рябушинский рассказал мне, что в юные годы он был ассистентом знаменитого аэродинамика Циолковского. Циолковский первым предложил изучать поведение летающих тел с помощью сравнительных экспериментов в плоском водном потоке.

Господин Рябушинский дополнительно показал мне ряд экспериментов, которые свидетельствовали, что плоскую водную аналогию можно использовать не только для изучения полета с дозвуковой скоростью, но и при сверхзвуковых скоростях. Я увидел, что волны воды, проходя через сопло Лаваля, формируются точно так же, как линии чисел Маха в газовом потоке. Соплом Лаваля называется канал, который после сужения опять расширяется. Мне рассказали, что в Технической высшей школе в Цюрихе аспирант профессора Аккерета по фамилии Прайсверк защитил диссертацию по теории и практике плоской водной аналогии. Вернувшись в Ганновер, я заказал себе эту работу. В 1942 году это стало для меня настоящим событием.

В Блайхероде, когда мне понадобились знания об аэродинамических давлениях, силах и моментах на корпусе ракеты при высоких дозвуковых скоростях, я вспомнил о парижских опытах. Небольшой плоский канал мы смогли для себя построить даже при наших тогдашних весьма ограниченных возможностях. Добыть материал даже для такого маленького экспериментального стенда тогда, в 1946 году, было очень трудно. Ловкий мастер выискивал среди металлолома металлические уголки и листы жести и из всего этого смастерил канал Источником служил поток воды из обычного водопровода, который сначала проходил через так называемый успокоительный участок. Мастер выточил из металла очень точную модель крыльев, а также копию корпуса ракеты. Измеренная высота воды позволила рассчитать давление, плотность и скорость, соответствующие газовому потоку. По этим направлениям работы специализировался доктор Иоханнес Шмидель, опытный экспериментатор. Он написал очень обстоятельный и подробный отчет о своих измерениях.

В Городомле мы спроектировали канал большого размера, с площадью измерений от одного до двух метров, приводимый в действие насосом. Однако, прежде чем нам предоставили возможность соорудить этот канал, мы с Иоханнесом Шмиделем должны были изложить принцип аналогии для газового потока и методику измерений в канале на научно-техническом совете одного московского института. Сначала молодые русские специалисты, выступавшие в качестве оппонентов нашего проекта, отнеслись к нему очень скептически. Этот метод был им неизвестен, как и мне шесть лет назад при встрече с Рябушинским. Но, в конце концов, советские инженеры все же согласились с нашими доводами, когда услышали, что автором идеи был их соотечественник Циолковский и что теперь доведенный до совершенства метод может снова вернуться в их страну. Научный совет одобрил наше предложение. Большой водный канал в Городомле был построен и разместился в одном из цехов института. Мы смогли очень продуктивно экспериментировать в нашем канале. Мы фотографировали картины течения и могли по высоте воды, обтекающей модель, рассчитывать плотность, давление и скорость для большой конструкции, аналогичной модели.

Работы Иоханнеса Шмиделя закончились неожиданно и трагически. Он заболел. Вначале ему и его коллегам казалось, что у него просто расстройство желудка. Но вскоре его отвезли в больницу в Осташков, а затем на операцию в Москву, и мы услышали об ужасающем диагнозе: был определен рак в очень запущенной стадии. Сказали, что операция бессмысленна. Он вскоре умер. Его жена и дочь поддерживались материально из нашей кассы взаимопомощи.

Работы в плоском водном канале продолжил Гельмут Фризер. Когда он приехал на остров, ему было уже 45 лет. По образованию он был химиком. Однако при его универсальности и знаниях в смежных областях, особенно в физике и математике, ему было несложно, опираясь на первоначальный фундамент своего образования, осваивать новые сферы деятельности. До отъезда в Советский Союз он работал профессором научной фотографии в Технической высшей школе в Дрездене. Он, собственно говоря, не занимался ракетами, за исключением одного раза, когда по заданию Пенемюнде, данному Технической высшей школе в Дрездене, он фотографировал реактивную струю от двигателя ракеты. На меня произвело захватывающее дух впечатление то, как быстро этот трудолюбивый человек освоил до сих пор чуждую ему аэродинамику. В качестве первого связующего моста между нашими областями я предложил ему обосновать возможность использования экспонированного фотослоя и эффекта его взаимодействия с проявляющей жидкостью для регистрации локальной скорости при аэродинамическом эксперименте. Как показывает опыт, процесс проявления ускоряется при усиленном движении жидкости. Почернение быстрее появляется в тех местах, где жидкость остается неподвижной или немного колеблется. Гельмут Фризер быстро разобрался с теорией распределения параметров потока при обтекании тел, читал книги Прандтля и Зауера, много дискутировал с нами. Результаты своего исследования он изложил в отчете, и я предложил ему продолжить работу с нами, заменив доктора Шмиделя в экспериментах в плоском водном канале.

Тогда нас интересовали течения в воде, которые можно было бы сравнить со сверхзвуковым потоком воздуха. Скорость, аналогичная сверхзвуковой скорости в воздухе, в плоской воде имеет очень низкие значения. При глубине воды в десять сантиметров она составляет только один метр в секунду. Чтобы получить аналогичную картину течения при сверхзвуковой скорости, нужно определенное время пропускать воду через сопло Лаваля. Так делали в своих первых опытах Рябушинский и Прайсверк. Однако господин Фризер установил, что длинное сопло Лаваля неизбежно искажает картину течения из-за трения по всей его длине. Из-за постоянно колеблющегося потока мы не могли измерить местную высоту воды с точностью до десятой миллиметра.

Однажды Гельмут Фризер удивил меня улучшенным сглаженным течением, заменив сопло Лаваля коротким подтопленным водосливом, который используют гидротехники. Таким образом, можно было получить необходимую точность измерения. Вскоре мы использовали канал для изучения течений, изменяющихся во времени. Нам нужна была информация о силах и моментах, возникающих на острие ракеты при отрыве потока от корпуса.

При оценке экспериментов нельзя было забывать об известных основных несовершенствах аналогии. Речь идет о следующем: в газодинамических уравнениях, которые устанавливают связь между давлением, плотностью и температурой, появляется некая физическая величина, которая обозначается греческой буквой «k». Ее численное значение определяется отношением удельного тепла при постоянных давлениях и температурах, и для воздуха составляет примерно 1,4. Но для плоских водных течений аналогичная величина является неизменной и равна 2,0. Несмотря на то, что при большинстве применений, действие этой разницы незначительно, мы должны были каждый раз относится к измерением очень критически.

Другое несовершенство состояло в свободной водной поверхности, которую разрешается использовать в качестве аналогии обтеканию газовым потоком цилиндрических тел. Это не удается столь же просто сделать для конусообразных тел, таких, например, как корпус ракеты. Он должен быть заменен контуром плоского цилиндрического тела с равной формой поперечного сечения. Эксперименты в плоском водном канале, безусловно, являются значительной помощью при предварительном определении характера обтекания, однако затем необходимы исследования в сверхзвуковой аэродинамической трубе для более точных промеров области течения и определения его свойств.

Уже при моем первом посещении Москвы полковник Победоносцев предложил использовать для привода аэродинамической трубы компрессор приводного двигателя самолета типа «Jumo-004». Освальд Конрад исследовал эту возможность и установил, что плотность воздуха, достижимая с помощью этого компрессора, была бы недостаточна для продувки аэродинамической трубы со сверхзвуковой скоростью. Памятуя о скромной энергетической базе на нашем острове, мы были вынуждены использовать для аэродинамической трубы только те мощности, которые были у нас в наличии. Мы решили откачать до вакуума баллон большого объема, а затем через сопло Лаваля пустить в баллон воздух с атмосферным давлением. При этом за соплом Лаваля достигалась бы сверхзвуковая скорость. При такой конструкции для создания в баллоне безвоздушного пространства достаточно незначительной приводной мощности насоса. Насос работал несколько часов до тех пор, пока давление в баллоне не становилось очень маленьким. Входящий со сверхзвуковой скоростью поток заполнял баллон несколько минут. Но и этого короткого времени нам было достаточно для измерения температур, давлений, сил и моментов. Все они преобразовывались в электрические величины и автоматически регистрировались приборами.

Весь объем работ по вводу сверхзвуковой аэродинамической трубы был настолько велик, что понадобилась помощь других секторов. Доктор Коерманн из механического сектора сконструировал электрические регистрирующие скоростные аэродинамические весы для измерения подъемной силы, сопротивления и момента вокруг поперечной оси. Эрих Апель, в значительной степени при помощи механика-умельца господина Фидлера, изготовил эти весы в мастерских острова. Нам сделали замечательный измерительный прибор. Второй из конструкторских секторов, возглавляемый господином Яффке, взял на себя все конструкторские работы в аэродикамической трубе. Мы, аэродинамики, определили основные размеры и рассчитали контуры нескольких сопел Лаваля. Но из центрального института в Москве пришло концептуальное изменение проекта: мы должны работать не с вакуумным баллоном, а пропускать воздух на измерительный участок через сопло Лаваля из сосуда под большим давлением. Большой сосуд под давлением подсоединили к общей батарее баллонов. Большие поршневые компрессоры в течение нескольких часов закачивали воздух в батарею баллонов до тех пор, пока на манометре достигалось давление в 100, а иногда в 150 атмосфер. Но время для замеров в этом варианте было также очень коротким и ограничивалось несколькими минутами. Поршневые компрессоры приводились электродвигателями. На нашей маленькой электростанции теперь в качестве привода электрогенератора использовался новый дизель-мотор. Этот агрегат вытеснил старый локомотив, топившийся дровами. Общий объем затрат был очень большим, и наша аэродинамическая труба заработала только в последний год нашего пребывания на острове. Тогда мы смогли провести ряд измерений на моделях конусообразных ракет, измерить нестационарную теплопередачу на корпусе и подтвердить наши расчеты. В самом последнем разрабатываемом нами проекте, а именно в противовоздушной ракете, уже было возможно, параллельно с проектной работой, измерять силы и моменты в аэродинамической трубе.

Однако вернусь к этапу сооружения аэродинамической трубы. Энергия сжатого воздуха будет только тогда использоваться эффективно, когда между батареей под давлением и соплом Лаваля стоит клапан, который открывается на очень короткое время замера и потом опять закрывается. Господин Яффке поручил спроектировать и изготовить этот клапан старейшему конструктору господину Фигеру. Это было довольно сложное приспособление. Господин Фигер объяснял мне принцип его действия по конструкторским чертежам. При этом я заметил, что у него довольно неправильные представления о газодинамическом характере сжатого воздуха: господин Фигер разработал собственную теорию о сжимаемости, которую я лично признать не мог. Я заключил, что с такими неправильными воззрениями на основной физический процесс вряд ли можно изготовить хороший клапан. Я был против его конструкции и рассказал об этом господину Яффке и русскому главному инженеру господину Курганову. Но главный инженер настоял на том, чтобы конструкция господина Фигера была реализована. Клапан был построен и превосходно выдержал испытания, наилучшим образом соответствуя всем требованиям. Я, как пользователь аэродинамической трубы, мог быть доволен. Я много размышлял над тем, в чем состояла ошибочность моей оценки конструкции, и пришел к заключению, что в данном случае большой конструкторский опыт и интуитивно правильная инженерная мысль компенсировали недостатки понимания физического процесса.

Уже через четырнадцать дней после пробного пуска трубы мы должны были соорудить шумозащитный корпус вокруг до сих пор открытого участка измерения. Это было необходимо, так как свободная струя шумела ужасно. Даже с шумозащищающим корпусом вокруг испытательного стенда стоял невообразимый грохот.

К пробному пуску я установил в разных местах подводящего трубопровода манометры. Они должны были регистрировать давление на батарее сосудов, поворотных коленах, ответвлениях и в различных местах трубы. Возле каждого манометра сидел наблюдатель, который после сигнального светового импульса из пункта управления, должен был синхронно записать давление. Затем я посмотрел на результаты замеров, они полностью соответствовали ожиданиям — за исключением одного места наблюдения, где стояло несколько манометров, и было два наблюдателя. Они сообщили, что сразу после подачи сжатого воздуха, давление от наивысшего значения так быстро упало до нуля, что было невозможно его записать. Я проверил манометры. они были в порядке. Все места стыков на трубопроводе были уплотнены. Я собрал все протоколы, уселся на скамеечку, сравнивал полученные данные и размышлял. Ко мне подошел старший из двух наблюдателей, господин Цулинский, мастер из наших мастерских, относящихся к сектору аэродинамики. «Прежде, чем Вы сломаете голову, я хочу раскрыть загадку», — начал он. Я оторвался от листков протоколов и услышал: «Когда канал запустился, раздался страшный грохот, и мы думали, что все взорвалось и полетело вверх». Он добавил, осознавая свою вину: «Извините, пожалуйста». Я дружески ему улыбнулся, как будто проблема была решена, и пожал ему руку. Никто из нас раньше не работал в сверхзвуковой трубе и не слышал этого ужасающего грохота.

Было уже довольно поздно, когда мастер и инженеры сектора аэродинамики, радостные, что все так хорошо функционирует, ушли из института. Для каждого из нас этот удавшийся пробный пуск был событием. Я радовался возможности проводить исследования на действующей установке. В деревеньке Городомли тоже был слышен громкий гул аэродинамической трубы. Моя жена рассказала мне позже, что наш четырехлетний сын очень хорошо мог отличить шум наддува аэродинамической трубы от шума силовых стендов. Если несколько минут слышался продолжительный гул, он быстро и безошибочно определял: «Это — папа, а это Умпфенбах».

Да, господин Умпфенбах, руководитель сектора двигателей, еще раньше нас ввел в действие испытательный стенд, на котором испытывал модельные двигатели ракет. И специалисты по управлению также проделывали свои опыты с большим шумом. Этот шум создавал самолет, медленно летящий биплан, который пеленговался, и направление которого фиксировалось рефлектором, закрепленным на очень длинной стальной мачте.

Наш маленький сын Петер очень боялся самолетов. Если он, играя на улице слышал гул самолета, что случалось крайне редко, он тотчас, плача, несся в дом. Став постарше, он смог рассказать о причине своего страха Подумав немного, Петер сказал: «От самолета может оторваться двигатель и упасть мне на голову». Мы ему никогда ничего не рассказывали о войне, налетах и бомбежках. Он не слышал от нас о наших прежних страхах, появлявшихся, когда мы ночью слышали над нами гул моторов самолетов и знали, что закрепленные на самолетах бомбы скоро будут падать вниз, а вскоре слышали и взрывы, иногда так близко, что в стеклах наших окон появлялись многочисленные трещины. В Городомле я иногда думал об этом. Может бытъ, что-то от этого страха родителей перед ужасами войны остается в наследственных воспоминаниях и передается затем последующему поколению.

Вскоре к экспериментальным работам нашего коллектива добавились пробные стрельбы ракет А4. Они состоялись в казахской степи. От нашего коллектива туда поехали специалисты по замерам параметров полета, а также некоторые коллеги по управлению во главе с Хохом и Магнусом. Хох вернулся, увенчанный успехом, с выросшим чувством собственного достоинства, как римский полководец после выигранной битвы. К началу стрельб точность попадания ракет была далека от цели, однако Хох быстро понял причину. За одну ночь он изготовил автоматический прибор управления, и с этого момента все попадания были точными.

Конечно, каждый сотрудник нашего коллектива, в том числе и я, был заинтересован принять участие в старте баллистической ракеты. Но русское руководство института при выборе участников стрельб ограничилось только самыми необходимыми разработчиками. Так получилось, что я и в дальнейшем ни разу не принимал участие в таких экспериментах.

Еще я хочу упомянуть о следующем. В Блайхероде мы в своих научных отделах знакомили всех заинтересованных сотрудников из других секторов с нашими проблемами, методами их решения и результатами. Всех — от баллистиков до термодинамиков. В Городомле вначале тоже было обычным делом знакомить интересующихся коллег со своими исследованиями посредством докладов. Однако все это вскоре прекратилось, по-видимому, из-за растущей нагрузки, сжатых сроков работы и из-за того, что для незапланированных мероприятий оставалось совсем мало времени, и потому не было настроения этим заниматься. Я сам ни разу не переступил порог испытательного стенда по двигателям господина Умпфенбаха.

Он никогда не был ни в лаборатории аэродинамики, ни в отделе плоского водного канала, ни в сверхзвуковой аэродинамической трубе. Я не был в лаборатории господина Хоха, и он у нас тоже не появлялся. Все ограничивалось служебными заседаниями, которыми руководил главный инженер, официальными ответами на вопросы и докладами о проделанной работе.

«РАБОТЫ, КОТОРЫЕ СООТВЕТСТВОВАЛИ МОИМ НАКЛОННОСТЯМ...»

Вернер Альбринг рассказывает о том, что способствовало выбору им его профессии, и что определило область его исследований.

 

В двадцатые годы двадцатого столетия, когда мне было от шести до шестнадцати лет, общественность проявляла большой интерес к техническому прогрессу и к вопросам естественных наук. Еще не все точки земной поверхности были доступны человеку, еще почти не были исследованы полярные области, не покорены многие высочайшие вершины. Сегодня уже трудно себе представить тогдашний восторг по поводу каждого удавшегося перелета через океан на дирижабле или самолете.

Значителен был и интерес многих людей к прогрессу в автомобилестроении или радиотехнике. Мы, молодые люди начала века, сами конструировали приемники, мотали катушки, из остатков старых пластинок и станиолевой бумаги делали конденсаторы. Конструкции автомобилей были тогда достаточно просты и наглядны. Без особых трудностей мы могли осуществить простой и даже средней трудности ремонт старого отцовского автомобиля.

Мой отец был заслуженным учителем реальной гимназии нашего небольшого вестфальского городка Швельм. От него я научился всегда вначале правильно формулировать возникающую проблему, внимательно относиться к чужим мнениям, взвешивать все возможные решения и только затем следовать по найденному, наиболее оптимальному, пути. В средней школе у меня было немало учителей, которые наряду с их педагогической деятельностью, вели собственные исследования в своих областях наук и тем самым заинтересовывали нас, учеников, в том, чтобы и мы сами работали с микроскопом, изучая тайны растений, или фотографировали Луну через подзорную трубу. Особенной радостью для меня было приходить в ателье к моему учителю рисования, который писал пейзажи и портреты в современном стиле.

Учились мы также и политическим дебатам. Особые воспоминания остались у меня о школьном реформаторе учителе истории докторе Фритце Хеллинге. Позднее, в шестидесятые годы, к его 80-летию Берлинский Университет имени Гумбольта присвоил ему почетное звание доктора. Ученик чаще всего воодушевляется не материалом учебника, а живым примером своего учителя. У меня было много выдающихся учителей, так что в дальнейшем выбор профессии мне дался очень трудно. Я разрывался от многообразия своих интересов. Я хотел стать художником или врачом, продолжать изучать биологию или стать политиком на базе изучения юриспруденции. Это намерение зафиксировано даже в моем аттестате.

Но я занялся изучением машиностроения, и к этому меня вынудили обстоятельства. Мой отец принадлежал к левому движению «Решающая реформа». С приходом к власти нацистов он был уволен из школы. При небольшой пенсии родители не могли платить за мое обучение. А так как я в то время интересовался и техникой, я сначала пошел рабочим на Швельмскую машиностроительную фабрику. Эта деятельность позднее была признана производственной практикой, открывающей мне путь для дальнейшего обучения в Высшей Технической школе в Ганновере (1934—1938).

Из тогдашних профессоров я с особой признательностью вспоминаю троих. И не только за их методику чтения лекций, сколько за их творческий подход к делу и особое умение представить и решить сложнейшую проблему простыми наглядными методами. Я глубоко благодарен профессору-механику Артуру Прёлю, который учил нас, как использовать возможности математики для определения нагрузок на мост, трения на шарикоподшипниках, подъемной силы пропеллера самолета. Профессор Герман Кранц читал лекции по теории прочности конструкций. Он соединял знания о материале и нагрузках с инженерными возможностями конструирования. Я вспоминаю и профессора Хорста фон Зандене, математика. Он сделал для студентов-инженеров доступным восхождение к абстрактным вершинам своей науки.

По окончании учебы я работал сначала конструктором — специалистом по прочности на авиазаводе. А затем вернулся в Техническую высшую школу в Ганновере. Тогда кафедра состояла в основном из ассистентов. Число мест для ассистентов, также как и для профессоров, было ограничено. Поэтому я был рад быть выбранным на такую работу. Я попал к профессору Прёлю, который руководил работами по механике твердых тел и аэродинамике. Он поставил передо мной задачу измерения аэродинамических сил на колеблющихся несущих крыльях. Это было очень актуально, поскольку скоростные самолеты были несовершенны.

Как инженер-механик я рассчитал и сконструировал весы для нестационарных измерений сил и моментов на крыльях. После окончания этой работы профессор Прёль доверил мне руководство аэродинамической лабораторией, государственной научной организацией примерно с 30 сотрудниками. Мне было тогда 27 лет. В институте были аэродинамические и гидродинамические трубы, мы занимались проблемными задачами в области аэрогидродинамики.

Оглядываясь назад, я думаю, что мне очень часто удавалось заниматься работами, которые соответствовали моим наклонностям. Границы между обязанностью и досугом стирались. Такова была моя деятельность в качестве конструктора в Ганновере, так с некоторыми ограничениями было и в Советском Союзе в период с 1946 по 1952 год.

(Из журнала «Spectrum» No 1, 1983 г.)


Яндекс.Метрика