На главную сайта   Все о Ружанах

Я.И. Перельман
РАКЕТОЙ НА ЛУНУ


Иллюстрации Ю. Д. СКАЛДИНА
Издание четвертое, дополненное
Государственное издательство детской литературы 1935


Наш адрес: ruzhany@narod.ru

ОТ МЫСЛИ К ДЕЛУ

Когда в самые последние годы изобретатели ракетных машин стали переходить от замысла к исполнению, то прежде всего поставили перед собою такой вопрос: как испытать, что ракета действительно может двигать не только себя, но и целую машину? С этой целью сделано было несколько попыток двигать ракетами повозки на земле.

Первые опыты такого рода делались с автомобилями. Снимали с автомобиля мотор и в задней части кузова устанавливали крупные ракеты. После нескольких проб сделан был опыт с автомобилем, который нес на себе двенадцать ракет. Опыт удался: при зажигании (электрической искрой) одной ракеты за другой автомобиль помчался с возрастающей скоростью и менее чем в десять секунд разогнался до ста километров в час.

Второй опыт был произведен с автомобилем лучшего устройства: он имел такую форму, которая помогала ему рассекать впереди себя воздух; по бокам имелись крылья – но не для того, чтобы, поднимать машину вверх, а, напротив, чтобы прижимать ее к земле, не давать ей отделяться от почвы. Ракет было поставлено вдвое больше, чем при первом опыте, – двадцать четыре. Когда они были зажжены, автомобиль сорвался с места и стремительно помчался, развив скорость двести двадцать километров в час.

 
Ракетный автомобиль.
При испытании такая машина развивала скорость в 220 километров в час.
 

При третьем опыте автомобиль с тридцатью шестью ракетами достиг скорости двухсот сорока километров в час.

Следующий опыт был сделан с ракетной «автодрезиной», т. е. с автомобилем на рельсах, в котором двигателем служили ракеты. Ожидалась такая большая скорость, что опасно было посадить человека; решено было испытать машину без седоков. Один седок, впрочем, был: чтобы узнать, как действует на здоровье быстрое нарастание скорости, поместили в автодрезину клетку с кошкой. Пускали машину с двадцатью четырьмя ракетами дважды. В первый раз она разогналась до скорости ста восьмидесяти километров в час.

Второй раз ждали еще большей скорости, но испытание кончилось несчастьем: машина сорвалась с рельсов и упала под откос; ракеты взорвались все сразу и уничтожили автомобиль. Погиб и четвероногий пассажир автодрезины.

При помощи ракет можно было бы сообщить повозкам очень большую скорость, но колеса не могут делать слишком большое число оборотов. При чересчур быстром вращении они разрываются на части. Вот почему сделаны были опыты с ракетными санями: здесь нет колес, и можно безопасно развить огромную скорость. Сани, снабженные восемнадцатью ракетами, достигли скорости, вдвое большей, чем ракетный автомобиль: четыреста километров в час. Интересно, что на большей части своего (правда, не длинного) пути полозья не оставили даже следов на снегу. Очевидно, сани неслись в воздухе, поверх снега.

 
Ракетная дрезина При испытании она достигла скорости 180 километров в час.
 

Эти опыты имеют то значение, что показывают, какую силу могут, развивать ракеты. Но ошибочно думать, что в будущем на автомобилях взамен моторов станут употреблять ракеты. Нет расчета это делать: для тех скоростей, с какими может ехать автомобиль, ракеты обходятся дороже мотора. Выгодны ракеты лишь в случав очень больших скоростей. С такими большими скоростями можно двигаться только в пустоте, где воздух не мешает движению и где не приходится сворачивать в сторону, встречая преграду.

Вы видите, что ракета пригодна для полетов за атмосферу. Делались опыты и с мотоциклетами, велосипедами, а также с ракетными самолетами, т. е. с самолетами, на которых мотор был заменен ракетами. Опыты показали полную пригодность ракет и для самолета. Для полетов в плотной части атмосферы ракеты, однако, не будут применяться, разве лишь для облегчения старта, т. е. начала полета.

Зато ракеты окажутся незаменимыми при проникновении в самые высокие слои атмосферы, где разреженный воздух не может поддерживать обыкновенные самолеты и воздушные корабли.

Те же опыты обнаружили, однако, что необходимо совсем отказаться от такого опасного горючего, как порох, и заменить его более безопасными горючими жидкостями: спиртом, бензином, жидким водородом и др.

Чтобы продвинуть дело дальше, надо было научиться изготовлять ракеты, заряженные горючими жидкостями.

ПЕРВЫЕ ШАГИ

Пороховые ракеты употребляются уже давно, и люди научились изготовлять их очень хорошо. Ракеты же с жидким зарядом только недавно придуманы. Устройство их не такое простое, как ракет пороховых.

В пороховой ракете нет, в сущности, никакого особого устройства: вся внутренность ее состоит из одной лишь пороховой массы. Такая ракета после того, как ее подожгли, не требует никакого управления дальнейшим горением: заряд сам догорит до конца. Не то с горючими жидкостями. Для них нужны в ракете особые вместилища, отдельно для горючего и для жидкого кислорода. Кроме того, надо было придумать устройство, которое само подавало бы понемногу обе жидкости к очагу, где происходит горение. В то же время нужно уберечь остальной запас от смешения и взрыва.

 
Какой будет видна поверхность луны из окна подлетающего к ней ракетного корабля.
С земли можно сейчас наблюдать такую картину только в сильные телескопы.
 

К изготовлению ракет с жидким зарядом приступили только в самые последние годы. Особенно усердно работал над этим немецкий ученый Оберт, который уже с четырнадцатилетнего возраста размышлял над способами совершать полеты за атмосферу. Мы раньше говорили, что этот изобретатель, ничего не зная о других, сам пришел к мысли об устройстве ракетного корабля.

 
Профессор физики Герман Оберт, самый выдающийся знаток и работник ракетного дела в Западной Европе.
 

Немцам удалось построить ракету в рост человека–ракету совершенно нового образца, с жидким зарядом. Эта ракета уже много раз испытана в Берлине и работала превосходно: она взлетала около ста раз, правда, пока еще невысоко, но достаточно, чтобы доказать пригодность ее устройства.

Когда у нынешних строителей ракет окажется достаточно денег, ими будет построена более крупная ракета, с таким большим зарядом, что она сможет лететь вверх километров на сто. Это будет уже заметный успех на пути к завоеванию неба, который принесет большую пользу науке. На такую высоту не удавалось еще запускать ни одного воздушного шара даже без людей: самый высокий подъем шара без людей не превышал тридцати шести километров. Пушечные ядра случалось, правда, закидывать до 50 километров, но ведь, упав, снаряды не приносят никаких сведений о тех высотах, где они побывали. Поэтому ученым почти ничего не известно о воздухе выше тридцати шести километров; они могут только делать догадки о том, из чего он состоит, насколько разрежен, насколько охлажден и т. д.

Вы спросите, вероятно: как же можно будет это узнать, если на ракете не поднимется человек? Человека вполне может заменить инструмент, устроенный так, что он сам записывает свое показание; об этом было уже сказано в начале книжки. Например, ученые придумали градусники, которые сами записывают то, что они показывают; придумали и другие инструменты-самописцы. Ракета унесет с собою вверх такие самописцы, которые потом упадут вниз на большом зонте (парашюте); благодаря парашюту падение замедляется настолько, что инструменты не пострадают от удара о землю.

 
Как в Германии пускают большую модель ракеты с жидким зарядом,
Направо вверху внутреннее устройство этой ракеты.
 

Но не думайте, что сразу же после этого можно будет построить большую ракету для полета на луну. Нет, до полета на луну ракета должна пройти долгий путь развития, постепенно, шаг за шагом, приближаясь к ракетному кораблю для далеких путешествий в небесное пространство.

Какой будет следующий шаг? Вероятно, устройство большой ракеты для перевозки почты через океан – из Европы в Америку и обратно. Ракета с грузом писем будет перекинута за океан не через воздух: большая часть пути будет лежать выше атмосферы. Ракета вылетит из атмосферы, пройдет в пустоте несколько тысяч километров и, приблизившись к материку Америки, снизится снова в атмосферу, чтобы спуститься на землю. В пустом пространстве нет помехи движению, и потому перелет может быть сделан с огромной скоростью – в полчаса. Подумайте: почта, которую пароход везет в Америку почти неделю, будет доставляться в полчаса! Это не только очень скорая почта, но и очень дешевая. Отправка ракеты, правда, будет стоить несколько тысяч, но ведь она понесет с собой не одно письмо, а несколько тысяч. Значит, ракетная почта обойдется примерно по рублю за письмо. По быстроте передачи такая почта даже опережает телеграф. Если бы содержание тысяч писем было передано слово за словом по телеграфу, потребовалось бы не полчаса, а, пожалуй, целые сутки и стоило бы это не по рублю за письмо, а по нескольку сот рублей. Вы видите, что ракетная почта будет очень выгодна, и ею охотно будут пользоваться. А вместе с тем разовьется ракетное дело; это облегчит его дальнейшие шаги.

Вслед за почтовой ракетой придет пора устроить для полетов в Америку ракетные самолеты с пассажирами.

Самолеты эти полетят не только над водяным океаном, но и над океаном воздушным – над атмосферой. Там нет ни бурь, ни снега, ни туманов – ничего, что могло бы помешать полету и что так затрудняет теперь воздушные путешествия через океан на обыкновенных самолетах и дирижаблях (воздушных кораблях). Поэтому сообщение между материками можно будет наладить совершенно правильно: время прибытия ракетного самолета будет назначаться заранее с такою же точностью, с какой сейчас назначается время прибытия железнодорожных поездов. Правда, выше атмосферы нечем дышать, но воздух (кислород) будет взят летчиками с собой; так уже и теперь делают летчики, поднимающиеся на стратостатах и на самолетах в очень высокие слои атмосферы, где трудно дышать из-за малой плотности воздуха.

 
Испытание ракеты с жидким зарядом в Германии. Достигнув высшей точки подъема, ракета опускается вниз на парашюте. Такой опыт проделывали уже больше сотни раз.
 

 


Яндекс.Метрика